Excellent for highly accurate machining of heat-resistant and titanium alloy.

- **CVD coated US905**
 a new CVD coated grade, for efficient high-speed turning of heat-resistant alloys.

- An economical W type insert and a notch resistant, large corner radius type available.

- **RCMX** round insert available as standard.

- **CVD coated US905**
 available for M class MS / GJ breaker.
Special Breakers for Difficult-to-cut Materials

FJ/MJ/GJ/MS breaker

RCMX type insert

Features of FJ/MJ/MS/GJ breaker

FJ breaker

Finish cutting

G Class

- Optimum chip breaker for high accuracy finishing
- Changeable rake angle
- 9°-14°

- Reduced heat generation with the use of a sharp cutting edge.
- Superior chip control at very small depths of cut with a special dot type chip breaker.

MJ breaker

Medium—Finish cutting

M Class

- First recommended chip breaker
- Changeable rake angle
- 9°-13°

- M-class type with a smooth micro honing for highest sharpness.
- A curved edge design suitable for copy turning.
- A wide variety of corner radii, 0.4-1.6 available as standard.

MS breaker

Medium cutting

M Class

- The sharp edges reduces cutting temperatures.
- Reduced contact area on the rake face.
- Suppresses heat generation.

GJ breaker

Semi-heavy cutting

M Class

- Ideal for rough turning and machining of surface scale.
- 18°
- Flat land

- Sharpness and high cutting edge strength with an optimum rake angle and flat land.
- Cutting edge geometry optimized for resistance to face wear when cutting titanium alloy.

RCMX breaker

Medium cutting

NEW

- Standard breaker
- 18°
- 2.1

- A smaller lead angle prevents notching.

For effective use of large corner radius and round inserts

By setting the depth of cut smaller than the corner radius value, notching during cutting of heat-resistant alloys can be greatly reduced.

Corner radius > 1.5 x Depth of cut

- Depth of cut: 1 mm
- Corner radius over 1.5 is recommended.

Cutting conditions

- Workpiece : Inconel718
- Insert : CNMG1204-MJ (US905)
- Holder : PCLNL2525M12
- Cutting speed : 70m/min
- Feed : 0.2mm/rev
- Depth of cut : 1.0mm
- Coolant : Wet (water soluble)

- Cutting time : 1min.
- Lead angle (Large)

Large notch wear

- Cutting time : 10min.

Lead angle (Small)

- R0.8

- A smaller lead angle is the key to reduced notching.
Grade Features

Application range for heat resistant alloy machining

<table>
<thead>
<tr>
<th>Properties</th>
<th>Heat-resistant alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CVD coated US905 Unequalled wear resistance enables machining at high speeds when compared to conventional products.</td>
</tr>
<tr>
<td></td>
<td>Miracle Coated grade VP05RT The combination of MIRACLE coating and a high-strength micro-grain cemented carbide substrate increases wear resistance and exhibits high continuous cut performance.</td>
</tr>
<tr>
<td></td>
<td>Miracle Coated grade VP10RT A good balance of wear and fracture resistance. First recommendation for turning heat-resistant alloys. Also suitable for stainless steels.</td>
</tr>
<tr>
<td></td>
<td>Miracle Coated grade VP15TF High-strength micro-grain cemented carbide substrate. Ideal for interrupted cutting that requires high fracture resistance.</td>
</tr>
</tbody>
</table>

Features of **US905**

- **CVD Coated US905**
 - A CVD coating layer with a close micro structure to prevent flank and face wear of edges that are subject to very high temperatures.

- **Substrate**
 - The highest hardness cemented carbide substrate suitable for CVD coating. For reduced plastic deformation and improved dimensional accuracy of components.

Features of MIRACLE coating

- **Micro-structure of VP10RT**
 - Micro-grain cemented carbide

- **MIRACLE coating features**
 - Increased adhesion strength
 - Increased heat resistance

- **Micro-structure of Oxidation temperature/°C**
 - Unequalled wear resistance enables machining at high speeds when compared to conventional products.
 - Unmatched resistance to heat and plastic deformation.
 - Ideal for wear resistant high-speed machining.
 - Good balance of wear and fracture resistance. First choice for turning of titanium alloys.
 - High-strength micro-grain cemented carbide grade. Ideal for interrupted cutting that requires high fracture resistance.

Titanium alloys

<table>
<thead>
<tr>
<th>Properties</th>
<th>Titanium Alloys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cemented carbide grade RT9005 Unmatched resistance to heat and plastic deformation. Ideal for wear resistant high-speed machining.</td>
</tr>
<tr>
<td></td>
<td>Cemented carbide grade RT9010 Good balance of wear and fracture resistance. First choice for turning of titanium alloys.</td>
</tr>
<tr>
<td></td>
<td>Cemented carbide grade TF15 High-strength micro-grain cemented carbide grade. Ideal for interrupted cutting that requires high fracture resistance.</td>
</tr>
</tbody>
</table>
Special Breakers for Difficult-to-cut Materials

Cutting performance of FJ breaker

- Finished surface comparison on Inconel 718
 - Feed 0.15mm/rev
 - **FJ breaker VP10RT**
 - Rz=6.0 Rz JIS=5.6
 - **Competitor’s breakers for difficult-to-cutting materials**
 - Rz=7.5 Rz JIS=6.4
 - Feed 0.15mm/rev
 - **FJ breaker VP10RT**
 - Rz=2.4 Rz JIS=2.1
 - **Competitor’s breakers for difficult-to-cutting materials**
 - Rz=4.7 Rz JIS=4.4

 <Cutting conditions>
 - Insert : DNGG150408-FJ/VP10RT
 - Holder : PDJNL2525M15
 - Cutting speed : 40m/min
 - Depth of cut : 0.7mm
 - Coolant : Wet (water soluble)

 - The sharp cutting edges of the FJ breaker for fine feed turning to ensure high quality surface finishes.

Cutting performance of MJ breaker

- High speed turning of Inconel 718 **US905** with unmatched wear resistance.

 <Cutting conditions>
 - Insert : CNMG120408-MJ
 - Holder : PCLNL2525M12
 - Cutting speed : 90m/min
 - Feed : 0.15mm/rev
 - Depth of cut : 0.5mm
 - Coolant : Wet (water soluble)

 - Unparalleled “sharp” moulded chip breaker cutting edges of class M inserts.
 - For excellent wear resistance due to a combination of M class accuracy and the coated carbide grade US905.
 - Excellent for lowly rigidity workpieces and machines.
 - Ideal for stainless steel turning with a combination of M class accuracy and the coated carbide grade VP10RT.

Cutting performance of GJ breaker

- Titanium alloy (Ti-6Al-4V)
 - GJ breaker for excellent wear & fracture resistance.

 <Cutting conditions>
 - Insert : CNMG120408-GJ
 - Holder : PCLNL2525M12
 - Cutting speed : 50m/min
 - Feed : 0.25mm/rev
 - Depth of cut : 2mm
 - Coolant : Wet (water soluble)
Recommended cutting conditions

- **Cutting conditions**
 - **Stable cutting**
 - **General cutting**
 - **Unstable cutting**

- **Cutting area**
 - **F** Finish cutting
 - **M** Medium cutting
 - **S** Light cutting
 - **G** Semi-heavy cutting

Negative Inserts for Heat-resistant Alloy

<table>
<thead>
<tr>
<th>Cutting area</th>
<th>Breaker</th>
<th>1st Recommendation</th>
<th>Cutting speed (m/min)</th>
<th>Feed (mm/rev)</th>
<th>Depth of cut (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish cutting</td>
<td>FJ</td>
<td>VP10RT</td>
<td>20–60</td>
<td>−0.20</td>
<td>−0.8</td>
</tr>
<tr>
<td>Medium cutting</td>
<td>MJ</td>
<td>VP10RT</td>
<td>20–50</td>
<td>−0.20</td>
<td>0.5–1.5</td>
</tr>
<tr>
<td>Medium cutting</td>
<td>MS</td>
<td>VP10RT</td>
<td>20–50</td>
<td>0.10–0.25</td>
<td>0.5–2.0</td>
</tr>
<tr>
<td>Semi-heavy cutting</td>
<td>GJ</td>
<td>VP10RT</td>
<td>20–40</td>
<td>0.15–0.30</td>
<td>1.0–3.0</td>
</tr>
</tbody>
</table>

Negative Inserts for Titanium Alloy

<table>
<thead>
<tr>
<th>Cutting area</th>
<th>Breaker</th>
<th>1st Recommendation</th>
<th>Cutting speed (m/min)</th>
<th>Feed (mm/rev)</th>
<th>Depth of cut (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finish cutting</td>
<td>FJ</td>
<td>RT9010</td>
<td>50–100</td>
<td>−0.20</td>
<td>−0.8</td>
</tr>
<tr>
<td>Medium cutting</td>
<td>MJ</td>
<td>RT9010</td>
<td>40–90</td>
<td>−0.20</td>
<td>0.5–1.5</td>
</tr>
<tr>
<td>Medium cutting</td>
<td>MS</td>
<td>RT9010</td>
<td>40–80</td>
<td>0.10–0.25</td>
<td>0.5–2.0</td>
</tr>
<tr>
<td>Semi-heavy cutting</td>
<td>GJ</td>
<td>RT9010</td>
<td>40–70</td>
<td>0.15–0.30</td>
<td>1.0–3.0</td>
</tr>
</tbody>
</table>
Special Breakers for Difficult-to-cut Materials

Inserts

<table>
<thead>
<tr>
<th>Type</th>
<th>Shape</th>
<th>Order Number</th>
<th>Coating</th>
<th>Carbide Dimensions (mm)</th>
<th>Geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNGG1204V5-FJ</td>
<td>G</td>
<td>120401-FJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 12.7, S1: 4.76, Re: 5.16</td>
<td></td>
</tr>
<tr>
<td>DNGM150404-FJ</td>
<td>G</td>
<td>150408-FJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 12.7, S1: 4.76, Re: 5.16</td>
<td></td>
</tr>
<tr>
<td>VNGG1604V5-FJ</td>
<td>G</td>
<td>160401-FJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 9.525, S1: 4.76, Re: 3.81</td>
<td></td>
</tr>
<tr>
<td>MNG160404-MJ</td>
<td>M</td>
<td>160408-MJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 12.7, S1: 4.76, Re: 5.16</td>
<td></td>
</tr>
<tr>
<td>DNMG150404-MJ</td>
<td>M</td>
<td>150408-MJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 12.7, S1: 4.76, Re: 5.16</td>
<td></td>
</tr>
<tr>
<td>TNMG160404-MJ</td>
<td>M</td>
<td>160408-MJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 9.525, S1: 4.76, Re: 3.81</td>
<td></td>
</tr>
<tr>
<td>VNMG160404-MJ</td>
<td>M</td>
<td>160408-MJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 9.525, S1: 4.76, Re: 3.81</td>
<td></td>
</tr>
<tr>
<td>WMG080408-MJ</td>
<td>M</td>
<td>080408-MJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 12.7, S1: 4.76, Re: 5.16</td>
<td></td>
</tr>
<tr>
<td>CNGG120404-MJ</td>
<td>G</td>
<td>120408-MJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 12.7, S1: 4.76, Re: 5.16</td>
<td></td>
</tr>
<tr>
<td>DNGM150404-MJ</td>
<td>G</td>
<td>150408-MJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 12.7, S1: 4.76, Re: 5.16</td>
<td></td>
</tr>
<tr>
<td>VNMG160404-MJ</td>
<td>G</td>
<td>160408-MJ</td>
<td>[Coating] [Carbide]</td>
<td>D1: 9.525, S1: 4.76, Re: 3.81</td>
<td></td>
</tr>
</tbody>
</table>

- **G Class**: General-purpose cutting
- **M Class**: Medium cutting
- **G** and **M**: Inventory maintained
- **FJ** and **MJ**: Non stock, produced to order only

Notes:

- **Coating**: [Coating] [Carbide]
- **Dimensions (mm)**: [D1] [S1] [Re] [D2]
- **Geometry**: [Geometry](image)
<table>
<thead>
<tr>
<th>Type</th>
<th>Shape</th>
<th>Order Number</th>
<th>Coating</th>
<th>Carbide</th>
<th>Dimensions (mm)</th>
<th>Geometry</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Medium cutting - M Class)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Medium cutting - M Class)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GJ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Semihard cutting - M Class)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coating
- VP05RT
- VP10RT
- VP15RT

Carbide
- US905
- VP1055
- RT1505
- RF1505

Dimensions (mm)
- D1
- S1
- Re
- D2

Geometry
- 80°
- 55°

Images
- 3D illustrations of each insert type.
Application Examples

<table>
<thead>
<tr>
<th>Insert (Grade)</th>
<th>CNGG120408-MJ(VP15TF)</th>
<th>CNMG120408-MJ(US905)</th>
<th>DNMG150404-MJ(RT9010)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece</td>
<td>Ring (Inconel 718)</td>
<td>Inconel 718 (AM5663)</td>
<td>Titanium alloy (Ti-6Al-4V)</td>
</tr>
<tr>
<td>Cutting speed (m/min)</td>
<td>50(Continuous) 30(Interrupted)</td>
<td>90</td>
<td>70</td>
</tr>
<tr>
<td>Feed (mm/rev)</td>
<td>0.1</td>
<td>0.25</td>
<td>0.2</td>
</tr>
<tr>
<td>Depth of cut (mm)</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>Coolant</td>
<td>Wet</td>
<td>Wet</td>
<td>Wet</td>
</tr>
<tr>
<td>Result</td>
<td>0.25 pieces/corner</td>
<td>0.35 pieces/corner</td>
<td>0.75 pieces/corner</td>
</tr>
<tr>
<td>Class M MJ breaker (VP05RT)</td>
<td>Fracture</td>
<td>Class M MJ breaker (US905)</td>
<td>Cutting length: 1000m</td>
</tr>
<tr>
<td>Competitor's coated carbide</td>
<td>Fracture</td>
<td>Competitor's coated carbide</td>
<td>Cutting length: 680m</td>
</tr>
<tr>
<td>Stable machining without fracturing was possible with the MJ breaker.</td>
<td>Doubled tool life with the MJ breaker.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insert (Grade)</th>
<th>CNMG120408-GJ(VP10RT)</th>
<th>TNMG160408-MJ(VP05RT)</th>
<th>RCMX120400-MJ(VP05RT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workpiece</td>
<td>Pin (Inconel 718)</td>
<td>Sintered iron components (FH655)</td>
<td>Case (Inconel 718)</td>
</tr>
<tr>
<td>Cutting speed (m/min)</td>
<td>31</td>
<td>120</td>
<td>45</td>
</tr>
<tr>
<td>Feed (mm/rev)</td>
<td>0.2</td>
<td>0.05</td>
<td>0.2</td>
</tr>
<tr>
<td>Depth of cut (mm)</td>
<td>2.3</td>
<td>0.5</td>
<td>0.8</td>
</tr>
<tr>
<td>Coolant</td>
<td>W.S.O.</td>
<td>Wet</td>
<td>Wet</td>
</tr>
<tr>
<td>Result</td>
<td>0.25 pieces/corner</td>
<td>0.75 pieces/corner</td>
<td>0.75 pieces/corner</td>
</tr>
<tr>
<td>Class M MJ breaker (VP10RT)</td>
<td>Fracture</td>
<td>Class M MJ breaker (VP05RT)</td>
<td>Cutting time: 11min</td>
</tr>
<tr>
<td>Competitor's coated carbide</td>
<td>Fracture</td>
<td>Competitor's coated carbide</td>
<td>Cutting time: 9min</td>
</tr>
<tr>
<td>GJ breaker for excellent chip disposal and vastly increased tool life.</td>
<td>50% longer tool life.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Your Safety
- Don’t handle inserts and chips without gloves.
- Please machine within the recommended application range and exchange expired tools with new ones in advance of breakage.
- Please use safety covers and wear safety glasses.
- When using compounded cutting oils, please take fire precautions.
- When attaching inserts or spare parts, please use only the correct wrench or spanner.